Local standard of rest (LSR)

- Local standard of rest is the point that is located today at the present position of the sun and that moves along a perfectly circular orbit around the galactic center.So the locus of LSR is not the actual orbit of the Sun.But this is a good enough reference because although LSR changes with time,the timescale of such changes is very large so periodic corrections can be done when considerable change occurs.
- The need for LSR arises from the fact that galaxy does not rotate as a single rigid entity but has a differential rotation. This means as one goes further away from the apex,the velocity of objects keep decreasing as shown in the figure below
- The velocity of an object with respect to the LSR is called its peculiar velocity and has three components represented as ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) where u is the velocity towards(positive) or away (negative)from the the G.C, v is the velocity of circular motion within the plane and w is the velocity towards(positive) or away (negative) from the NGP

$$
\begin{align*}
& U=\frac{d R}{d t} \tag{1}\\
& V=\frac{R d \phi}{d t} \tag{2}\\
& W=\frac{d z}{d t} \tag{3}
\end{align*}
$$

- Since the motion of LSR is restricted to the plane, its u and w components are zero. Therefore $U_{L S R}=W_{L S R}=0, V_{L S R}=V\left(R_{0}\right)$
- Peculiar velocity of any celestial object is $(\mathrm{u}, \mathrm{v}, \mathrm{w})=\left(u-U_{L S R}, v-V_{L S R}, w-W_{L S R}\right)=(\mathrm{u}, \mathrm{v}-$ $\left.V\left(R_{0}\right), \mathrm{w}\right)$
- If $\overrightarrow{\triangle v}$ is the velocity of a star with respect to the sun, the peculiar velocity of the star is

$$
\begin{gather*}
\vec{V}=\overrightarrow{V_{\text {sun }}}+\overrightarrow{\Delta v} \tag{4}\\
\overrightarrow{\Delta v}=\vec{V}-\overrightarrow{V_{\text {sun }}} \tag{5}\\
\langle\overrightarrow{\triangle v}\rangle=\left\langle\frac{\vec{v}_{1}+\vec{v}_{2}+\ldots+\vec{v}_{n}}{n}\right\rangle-\overrightarrow{V_{\text {sun }}} \tag{6}
\end{gather*}
$$

- Since the average of the random velocities of objects in the solar neighbourhood is zero,the mean of the velocity of stars is the peculiar velocity of the sun

$$
\begin{equation*}
\overrightarrow{V_{\text {sun }}}=-\langle\overrightarrow{\Delta v}\rangle \tag{7}
\end{equation*}
$$

- Thus the average velocities of stars within the solar neighbourhood will give us the particular velocity of sun.
- Once both the direction and magnitude of this $\overrightarrow{\Delta v}$ is calculated, each component of the Sun's velocity can be obtained as

$$
\begin{equation*}
V_{\text {sun }}=\left(u_{\text {sun }}, v_{\text {sun }}, w_{\text {sun }}\right) \tag{8}
\end{equation*}
$$

- Where,

$$
\begin{gather*}
u_{\text {sun }}=-10 \mathrm{Km} / \mathrm{sec} \tag{9}\\
v_{\text {sun }}=5 \mathrm{Km} / \mathrm{sec} \tag{10}\\
w_{\text {sun }}=7 \mathrm{Km} / \mathrm{sec} \tag{11}
\end{gather*}
$$

