Galactic Rotation

- From observations of the velocity of stars or gas around the Galactic center, the rotational velocity V can be determined as a function of the distance R from the Galactic center.
- We consider an object at distance R from the Galactic center which moves along a circular orbit in the Galactic plane, has a distance D from the Sun, and is located at a Galactic longitude l.
- We disregard the difference of velocities of the Sun and the LSR to get $v_{o}=v_{L S R}=\left(v_{o}, 0\right)$ in this coordinate system.

Figure 1: Tangent Point Method to Estimate Galactic Rotational Velocity

- Computation for the whole galactic rotation is done in two different ways :

1. The Inner part(Tangent Point Method) $\left(R<R_{o}\right)$

Where : $R_{o}=8 k p c$

* For this I and $I V$ galactic quadrants are being considered.
* The radial velocity v_{r} along this line-of-sight for objects moving on circular orbits is a function of the distance d.

$$
\begin{array}{r}
v_{r}=v \cos (90-\theta)-v_{o} \cos (90-l) \\
v_{r}=v \sin (\theta)-v_{o} \sin (l) \tag{1}
\end{array}
$$

* Sine law(figure 2):

Figure 2: Sine rule triangle

$$
\begin{equation*}
\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c} \tag{2}
\end{equation*}
$$

* Applying the sine law to find θ in terms of R

$$
\begin{align*}
& \frac{\sin (180-\theta)}{R_{o}}=\frac{\sin (l)}{R} \tag{3}\\
& \sin (\theta)=\sin \left(\frac{R_{o}}{R} \sin (l)\right)
\end{align*}
$$

* Putting the value of $\sin (\theta)$ in (1) :

$$
\begin{align*}
v_{r} & =v \sin (l) \frac{R_{o}}{R}-v_{o} \sin (l) \\
& =\sin (l)\left[v \frac{R_{o}}{R}-v_{o}\right] \tag{4}\\
& v(R)=\left[v_{o}+\frac{v_{r}}{\sin (l)}\right]\left(\frac{R}{R_{o}}\right)
\end{align*}
$$

* The velocity v_{r} attains a maximum where the line-of-sight is tangent to the local orbit, thus its distance R from the Galactic center attains the minimum value $R_{\text {min }}$.

$$
\begin{array}{r}
v(R)=\left[v_{o}+\frac{v_{r, \max }}{\sin (l)}\right]\left(\frac{R_{\text {min }}}{R_{o}}\right) \tag{5}\\
\text { Whrer }: R_{\text {min }}=R_{o} \sin (l)
\end{array}
$$

* Above equation(5) gives the velocity of an object wrt. the inner distance R in galactic disc.
* Figure(3) shows the velocity curve for different points.

2. The Outer part(Rotation Curve) $\left(R>R_{o}\right)$

Where : $R_{o}=8 \mathrm{kpc}$

Figure 3: Tangent Point Method to Estimate Galactic Rotational Velocity

* For this II and III galactic quadrants are being considered.
* The tangent point method cannot be applied for R i R_{0} because for linesof-sight, the radial velocity v_{r} attains no maximum.
* Measuring $\mathrm{V}(\mathrm{R})$ for $R>R_{0}$ requires measuring v_{r} for objects whose distance can be determined directly e.g. Cepheids.
* Refer figure(5) for different calculation parameters.

$$
\begin{array}{r}
v_{r}=v_{o} \cos (l-90)-v \cos (90-\theta) \\
v_{r}=v_{o} \sin (l)-v \sin (\theta) \tag{6}
\end{array}
$$

* Using sine rule we find the value of $\sin (\theta)$ in terms of R and R_{o}

$$
\begin{array}{r}
\frac{\sin (\theta)}{R_{o}}=\frac{\sin (l)}{R} \tag{7}\\
\sin (\theta)=\sin \left(\frac{R_{o}}{R} \sin (l)\right)
\end{array}
$$

* Putting the value of $\sin (\theta)$ in equation(6), we get

The BU-FCRAO Milky Way Galactic Ring Survey; Simon et al.
Figure 4: The figure shows $H I 21 \mathrm{~cm}$, and $C O^{12}$ and $C O^{13}$ emission along a particular sightline through the Galactic plane. The emission with the largest $v_{L S R}$ is likely to be close to the tangent point.

$$
\begin{align*}
v_{r} & =v_{o} \sin (l)-v \sin (l) \frac{R_{o}}{R} \\
& =\sin (l)\left[v_{o}-v \frac{R_{o}}{R}\right] \tag{8}\\
& v(R)=\left[v_{o}-\frac{v_{r}}{\sin (l)}\right]\left(\frac{R}{R_{o}}\right)
\end{align*}
$$

* Above equation(8) gives the velocity of an object wrt. the outer distance R in galactic disc.
* Figure(6) shows the Rotation curve for different orbital objects taken together after various surveys.

Figure 5: Rotation curve method

Figure 6: Milky Way Rotation Curve Bhattacharjee et al. (2014, ApJ)

