Tangent Point Method to Estimate Galactic Rotational Velocity


## Tangent Point Method to Estimate Galactic Rotational Velocity




The figure shows H I 21 cm , and 12CO and 13CO emission along a particular sightline through the Galactic plane. The emission with the largest v(LSR )is likely to be close to the tangent point.

## Milky Way Rotation Curve

Bhattacharjee et al. (2014, ApJ) (see next slide for source of data)


Different tracers of rotation curve in the disk of the Galaxy, used by Bhattacharjee et al. (2014, ApJ) "Rotation Curve of the Millky Way out to 200 kpc" (a compilation of results from other work)

| Tracer Type | Data Source |  | $(l, b)$ Ranges |
| :---: | :---: | :---: | :---: |
| HI regions ${ }^{a}$ <br> (HI-W76-B78) | Westerhout (1976); <br> Burton \& Gordon (1978) |  | $1^{\circ}<l<90^{\circ}$ |
| CO clouds ${ }^{a}$ (CO-B78) | Burton \& Gordon (1978) |  | $9^{\circ}<l<82^{\circ}$ |
| $\begin{aligned} & \mathrm{CO} \text { clouds }{ }^{a} \\ & (\mathrm{CO}-\mathrm{C} 85) \end{aligned}$ | Clemens (1985) |  | $13^{\circ}<l<86^{\circ}$ |
| HI regions ${ }^{a}$ <br> (HI-F89) | Fich et all (1989) |  | $15^{\circ}<l<89^{\circ}$ and $271^{\circ}<l<345^{\circ}$ |
| HII regions <br> (HII-F89) | Fich et all (1989) |  | $10^{\circ}<l<170^{\circ}$ and $190^{\circ}<l<350^{\circ}$ |
| HII regions \& reflection nebulae (HII-RN-B93) | Brand \& Blitz (1993) |  | $10^{\circ}<l<170^{\circ}$ and $190^{\circ}<l<350^{\circ}$ |
| Cepheids (Cepheid-P94) | Pont et ald (1994) |  | $10^{\circ}<l<170^{\circ}$ and $190^{\circ}<l<350^{\circ} ;\|b\|<10^{\circ}$ |
| Planetary nebulae <br> (PNe-M05-M84-D98) | Maciel \& Lagd (2005); Maciel (1984); Durand et al (1998) |  | $15^{\circ}<l<345^{\circ} ;\|b\|<10^{\circ}$ |
| Open star clusters <br> (OSC-F08-D02) | Frinchabov \& Majewsk ([2008); Dias et all (2002) |  | $10^{\circ}<l<170^{\circ}$ and $190^{\circ}<l<350^{\circ} ;\|b\|<9^{\circ}$ |
| HII regions (HII-H09) | Hou et all (2009) |  | $10^{\circ}<l<170^{\circ}$ and $190^{\circ}<l<350^{\circ}$ |
| HII regions ${ }^{a}$ <br> (HII-U11) | Urquhart et ald (2011) |  | $10^{\circ}<l<65^{\circ}$ and $280^{\circ}<l<350^{\circ}$ |
| $\begin{aligned} & \text { C stars } \\ & \text { (C stars-D07-B12) } \end{aligned}$ | $\begin{aligned} & \text { Demers \& Batt inell } \\ & \text { Battinelli et al. }(2012) \end{aligned}$ | (2007); | $54^{\circ}<l<150^{\circ} ; 3^{\circ}<\|b\|<9^{\circ}$ |

